QUICKSTART

Over 35 Years Of Technology Training

Document Generated: 10/21/2025
Learning Style: Virtual Classroom
Technology: Linux Foundation
Difficulty: Intermediate

Course Duration: 4 Days

Developing Applications For Linux (LFD401)

010101

Page 1/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

About this course:

Learn how to develop applications for the Linux environment. In this course, you'll
get hands-on experience with the necessary tools and methods for Linux
application development and learn about the features and techniques that are
unique to Linux.

This course is designed to help experienced developers get up to speed quickly on
how to develop applications for a Linux environment.

The average salary of an Embedded Linux Developer is $107,500 per year.
Course Objective:
In this course you'll learn:

¢ The tools and methods for developing C programs and doing systems
programming under Linux.

¢ Debugging techniques and process management.

e Linux specific paid and system calls.

e And more.

The information in this course will work with any major Linux distribution.
Audience:

e App Developers
e C/C++,C# developers
e Linyx Developers

Prerequisite:

¢ This course is for experienced developers. Students should be proficient in
C programming, and be familiar with basic Linux utilities and text editors.

Course Outline:
Introduction

¢ Objectives

e Who You Are

¢ The Linux Foundation

e Linux Foundation Training

¢ Linux Distributions

¢ Platforms

e Preparing Your System

¢ Using and Downloading a Virtual Machine
¢ Things change in Linux

e Course Registration

Page 2/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

Preliminaries

e Procedures
e Standards and the LSB

How to Work in OSS Projects **

e Overview on How to Contribute Properly

¢ Stay Close to Mainline for Security and Quality

e Study and Understand the Project DNA

¢ Figure Out What Itch You Want to Scratch

e |dentify Maintainers and Their Work Flows and Methods
¢ Get Early Input and Work in the Open

e Contribute Incremental Bits, Not Large Code Dumps

e Leave Your Ego at the Door: Don’t Be Thin-Skinned

e Be Patient, Develop Long Term Relationships, Be Helpful

Compilers

e GCC

Other Compilers

Major gcc Options

Preprocessor

Integrated Development Environments (IDE)
Labs

Libraries

e Static Libraries

e Shared Libraries

¢ Linking To Libraries

e Dynamic Linking Loader
e Labs

¢ Using make and Makefiles
e Building large projects

e More complicated rules

e Built-in rules

e Labs

Source Control

Page 3/9

e Source Control
RCS and CVS
Subversion

e git

Labs

https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

Debugging and Core Dumps

e gdb

What are Core Dump Files?
Producing Core Dumps

e Examining Core Dumps
Labs

Debugging Tools

¢ Electric Fence

Getting the Time

Profiling and Performance
valgrind

Labs

System Calls

System Calls vs. Library Functions
How System Calls are Made
Return Values and Error Numbers
Labs

Memory Management and Allocation

Memory Management
Dynamical Allocation
Tuning malloc()
Locking Pages

Labs

Files and Filesystems in Linux **

¢ Files, Directories and Devices
The Virtual File System

The ext2/ext3 Filesystem
Journaling Filesystems

The ext4/ Filesystem

Labs

File I/O

e UNIX File /0

e Opening and Closing

¢ Reading, Writing and Seeking
¢ Positional and Vector 1/0

e Standard I/O Library

e Large File Support (LFS)

e Labs

Page 4/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

Advanced File Operations

e Stat Functions

e Directory Functions

¢ inotify

e Memory Mapping

¢ flock() and fcntl()

e Making Temporary Files
e Other System Calls

e Labs

Processes — |

e What is a Process?

¢ Process Limits

Process Groups

The proc Filesystem

Inter-Process Communication Methods
Labs

Processes — ||

¢ Using system() to Create a Process
e Using fork() to Create a Process

e Using exec() to Create a Process

e Using clone()

e Exiting

e Constructors and Destructors

¢ Waiting

¢ Daemon Processes

e Labs

Pipes and Fifos

Pipes and Inter-Process Communication
popen() and pclose()

pipe()

Named Pipes (FIFOs)

splice(), vmsplice() and tee()

Labs

Asynchronous I/O**

What is Asynchronous 1/0?

The POSIX Asynchronous 1/0 API
Linux Implementation

Labs

Signals — |

Page 5/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

What are Signals?

Signals Available

Dispatching Signals

Alarms, Pausing and Sleeping
Setting up a Signal Handler
Signal Sets

sigaction()

Labs

Signals - lI

Reentrancy and Signal Handlers
Jumping and Non-Local Returns
siginfo and sigqueue()

Real Time Signals

Labs

POSIX Threads — |

Multi-threading under Linux
Basic Program Structure
Creating and Destroying Threads
Signals and Threads

Forking vs. Threading

Labs

POSIX Threads — Il

Deadlocks and Race Conditions
Mutex Operations

Semaphores

Futexes

Conditional Operations

Labs

Networking and Sockets

Networking Layers
What are Sockets?
Stream Sockets
Datagram Sockets
Raw Sockets

Byte Ordering
Labs

Sockets — Addresses and Hosts

Page 6/9

Socket Address Structures
Converting IP Addresses
Host Information

https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

e Labs
Sockets — Ports and Protocols

¢ Service Port Information
¢ Protocol Information
e Labs

Sockets — Clients

¢ Basic Client Sequence
e socket()

e connect()

¢ close() and shutdown()
e UNIX Client

e Internet Client

e Labs

Sockets — Servers

¢ Basic Server Sequence
e bind()

e listen()

e accept()

¢ UNIX Server

¢ Internet Server

e Labs

Sockets — Input/Output Operations

e write(), read()

e send(), recv()

¢ sendto(), recvfrom()

e sendmsg(), recvmsg()
¢ sendfile()

e socketpair()

e Labs

Sockets — Options

Getting and Setting Socket Options
fentl()

ioctl()

getsockopt() and setsockopt()

Labs

Netlink Sockets**

¢ What are netlink Sockets?
e Opening a netlink Socket

Page 7/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

¢ netlink Messages
e Labs

Sockets — Multiplexing and Concurrent Servers

e Multiplexed and Asynchronous Socket I/0
e select()

* poll()

¢ pselect() and ppoll()

e epoll

¢ Signal Driven and Asynchronous I/O

¢ Concurrent Servers

e Labs

Inter Process Communication

Methods of IPC
POSIX IPC
System V IPC**
Labs

Shared Memory

What is Shared Memory?
POSIX Shared Memory
System V Shared Memory**
Labs

Semaphores

e What is a Semaphore?

e POSIX Semaphores

e System V Semaphores**
e Labs

Message Queues

¢ What are Message Queues?
¢ POSIX Message Queues

e System V Message Queues**
e Labs

Closing and Evaluation Survey
** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced

subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints.

Page 8/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

Credly Badge:

Display your Completion Badge And Get The
Recognition You Deserve.

QUICKSTART

et Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With

badges issued and validated by Credly, you can:

¢ Let anyone verify your completion and
achievement by clicking on the badge

* Display your hard work and validate your
expertise

¢ Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

Find Out More or See List Of Badges

Page 9/9 https://jamsadr.quickstart.com/developing-applications-for-linux-1fd401.html

https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://jamsadr.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

