
 Document Generated: 10/21/2025

Learning Style: Virtual Classroom

Technology: Linux Foundation

Difficulty: Intermediate

Course Duration: 4 Days

Developing Applications For Linux (LFD401)

 

Page 1/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



About this course:

Learn how to develop applications for the Linux environment. In this course, you’ll
get hands-on experience with the necessary tools and methods for Linux
application development and learn about the features and techniques that are
unique to Linux.

This course is designed to help experienced developers get up to speed quickly on
how to develop applications for a Linux environment.

The average salary of an Embedded Linux Developer is $107,500 per year.

Course Objective:

In this course you’ll learn:

The tools and methods for developing C programs and doing systems
programming under Linux.
Debugging techniques and process management.
Linux specific paid and system calls.
And more.

The information in this course will work with any major Linux distribution.

Audience:

App Developers
C/C++,C# developers
Linyx Developers

Prerequisite:

This course is for experienced developers. Students should be proficient in
C programming, and be familiar with basic Linux utilities and text editors.

Course Outline:

Introduction

Objectives
Who You Are
The Linux Foundation
Linux Foundation Training
Linux Distributions
Platforms
Preparing Your System
Using and Downloading a Virtual Machine
Things change in Linux
Course Registration

Page 2/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



Preliminaries

Procedures
Standards and the LSB

How to Work in OSS Projects **

Overview on How to Contribute Properly
Stay Close to Mainline for Security and Quality
Study and Understand the Project DNA
Figure Out What Itch You Want to Scratch
Identify Maintainers and Their Work Flows and Methods
Get Early Input and Work in the Open
Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don’t Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Compilers

GCC
Other Compilers
Major gcc Options
Preprocessor
Integrated Development Environments (IDE)
Labs

Libraries

Static Libraries
Shared Libraries
Linking To Libraries
Dynamic Linking Loader
Labs

Make

Using make and Makefiles
Building large projects
More complicated rules
Built-in rules
Labs

Source Control

Source Control
RCS and CVS
Subversion
git
Labs

Page 3/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



Debugging and Core Dumps

gdb
What are Core Dump Files?
Producing Core Dumps
Examining Core Dumps
Labs

Debugging Tools

Electric Fence
Getting the Time
Profiling and Performance
valgrind
Labs

System Calls

System Calls vs. Library Functions
How System Calls are Made
Return Values and Error Numbers
Labs

Memory Management and Allocation

Memory Management
Dynamical Allocation
Tuning malloc()
Locking Pages
Labs

Files and Filesystems in Linux **

Files, Directories and Devices
The Virtual File System
The ext2/ext3 Filesystem
Journaling Filesystems
The ext4/ Filesystem
Labs

File I/O

UNIX File I/O
Opening and Closing
Reading, Writing and Seeking
Positional and Vector I/O
Standard I/O Library
Large File Support (LFS)
Labs

Page 4/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



Advanced File Operations

Stat Functions
Directory Functions
inotify
Memory Mapping
flock() and fcntl()
Making Temporary Files
Other System Calls
Labs

Processes – I

What is a Process?
Process Limits
Process Groups
The proc Filesystem
Inter-Process Communication Methods
Labs

Processes – II

Using system() to Create a Process
Using fork() to Create a Process
Using exec() to Create a Process
Using clone()
Exiting
Constructors and Destructors
Waiting
Daemon Processes
Labs

Pipes and Fifos

Pipes and Inter-Process Communication
popen() and pclose()
pipe()
Named Pipes (FIFOs)
splice(), vmsplice() and tee()
Labs

Asynchronous I/O**

What is Asynchronous I/O?
The POSIX Asynchronous I/O API
Linux Implementation
Labs

Signals – I

Page 5/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



What are Signals?
Signals Available
Dispatching Signals
Alarms, Pausing and Sleeping
Setting up a Signal Handler
Signal Sets
sigaction()
Labs

Signals – II

Reentrancy and Signal Handlers
Jumping and Non-Local Returns
siginfo and sigqueue()
Real Time Signals
Labs

POSIX Threads – I

Multi-threading under Linux
Basic Program Structure
Creating and Destroying Threads
Signals and Threads
Forking vs. Threading
Labs

POSIX Threads – II

Deadlocks and Race Conditions
Mutex Operations
Semaphores
Futexes
Conditional Operations
Labs

Networking and Sockets

Networking Layers
What are Sockets?
Stream Sockets
Datagram Sockets
Raw Sockets
Byte Ordering
Labs

Sockets – Addresses and Hosts

Socket Address Structures
Converting IP Addresses
Host Information

Page 6/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



Labs

Sockets – Ports and Protocols

Service Port Information
Protocol Information
Labs

Sockets – Clients

Basic Client Sequence
socket()
connect()
close() and shutdown()
UNIX Client
Internet Client
Labs

Sockets – Servers

Basic Server Sequence
bind()
listen()
accept()
UNIX Server
Internet Server
Labs

Sockets – Input/Output Operations

write(), read()
send(), recv()
sendto(), recvfrom()
sendmsg(), recvmsg()
sendfile()
socketpair()
Labs

Sockets – Options

Getting and Setting Socket Options
fcntl()
ioctl()
getsockopt() and setsockopt()
Labs

Netlink Sockets**

What are netlink Sockets?
Opening a netlink Socket

Page 7/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



netlink Messages
Labs

Sockets – Multiplexing and Concurrent Servers

Multiplexed and Asynchronous Socket I/O
select()
poll()
pselect() and ppoll()
epoll
Signal Driven and Asynchronous I/O
Concurrent Servers
Labs

Inter Process Communication

Methods of IPC
POSIX IPC
System V IPC**
Labs

Shared Memory

What is Shared Memory?
POSIX Shared Memory
System V Shared Memory**
Labs

Semaphores

What is a Semaphore?
POSIX Semaphores
System V Semaphores**
Labs

Message Queues

What are Message Queues?
POSIX Message Queues
System V Message Queues**
Labs

Closing and Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints.

Page 8/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html



Credly Badge:

  

  

  

  
  Display your Completion Badge And Get The
Recognition You Deserve. 

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

  Find Out More or See List Of Badges 

Powered by TCPDF (www.tcpdf.org)

Page 9/9 https://jamsadr.quickstart.com/developing-applications-for-linux-lfd401.html

https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://www.credly.com/org/quickstart/badge/developing-applications-for-linux-lfd401.1
https://jamsadr.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

