
 Document Generated: 10/21/2025

Learning Style: Virtual Classroom

Technology: Linux Foundation

Difficulty: Intermediate

Course Duration: 4 Days

Linux Kernel Internals and Development (LFD420)

Page 1/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

About this course:

Learn how to develop for the Linux kernel. In this course you’ll learn how Linux is
architected, the basic methods for developing on the kernel, and how to efficiently
work with the Linux developer community. If you are interested in learning about the
Linux kernel, this is absolutely the definitive course on the subject.

This course is designed to provides experienced programmers with a solid
understanding of the Linux kernel. In addition to a detailed look at the theory and
philosophy behind the Linux kernel, you’ll also participate in extensive hands-on
exercises and demonstrations designed to give you the necessary tools to develop
and debug Linux kernel code.

The average salary of an Embedded Linux Developer is $107,500 per year.

Course Objective:

In this course you’ll learn:

How Linux is architected
How kernel algorithms work
Hardware and memory management
Modularization techniques and debugging
How the kernel developer community operates and how to efficiently work
with it.
And much more.

The information in this course will work with any major Linux distribution.

Audience:

App Developers
C/C++,C# developers
Linyx Developers

Prerequisite:

Students should be proficient in the C programming language, basic Linux
(UNIX) utilities such as ls, grep and tar, and be comfortable with any of the
available text editors (e.g. emacs, vi, etc.) Experience with any major Linux
distribution is helpful but not strictly required.

Course Outline:

Introduction

Objectives
Who You Are
The Linux Foundation

Page 2/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Linux Foundation Training
Linux Distributions
Platforms
Preparing Your System
Using and Downloading a Virtual Machine
Things change in Linux
Documentation and Links
Course Registration

Preliminaries

Procedures
Kernel Versions
Kernel Sources and Use of git

How to Work in OSS Projects **

Overview on How to Contribute Properly
Stay Close to Mainline for Security and Quality
Study and Understand the Project DNA
Figure Out What Itch You Want to Scratch
Identify Maintainers and Their Work Flows and Methods
Get Early Input and Work in the Open
Contribute Incremental Bits, Not Large Code Dumps
Leave Your Ego at the Door: Don’t Be Thin-Skinned
Be Patient, Develop Long Term Relationships, Be Helpful

Kernel Architecture I

UNIX and Linux **
Monolithic and Micro Kernels
Object-Oriented Methods
Main Kernel Tasks
User-Space and Kernel-Space
Kernel Mode Linux **

Kernel Programming Preview

Error Numbers and Getting Kernel Output
Task Structure
Memory Allocation
Transferring Data between User and Kernel Spaces
Linked Lists
String to Number Conversions
Jiffies
Labs

Modules

What are Modules?

Page 3/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

A Trivial Example
Compiling Modules
Modules vs Built-in
Module Utilities
Automatic Loading/Unloading of Modules
Module Usage Count
The module struct
Module Licensing
Exporting Symbols
Resolving Symbols **
Labs

Kernel Architecture II

Processes, Threads, and Tasks
Process Context
Kernel Preemption
Real Time Preemption Patch
Dynamic Kernel Patching
Run-time Alternatives **
Porting to a New Platform **
Labs

Kernel Initialization

Overview of System Initialization
System Boot
Das U-Boot for Embedded Systems**

Kernel Configuration and Compilation

Installation and Layout of the Kernel Source
Kernel Browsers
Kernel Configuration Files
Kernel Building and Makefiles
initrd and initramfs
Labs

System Calls

What are System Calls?
Available System Calls
How System Calls are Implemented
Adding a New System Call
Labs

Kernel Style and General Considerations

Coding Style
kernel-doc **

Page 4/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Using Generic Kernel Routines and Methods
Making a Kernel Patch
sparse
Using likely() and unlikely()
Writing Portable Code, CPU, 32/64-bit, Endianness
Writing for SMP
Writing for High Memory Systems
Power Management
Keeping Security in Mind
Mixing User- and Kernel-Space Headers **
Labs

Race Conditions and Synchronization Methods

Concurrency and Synchronization Methods
Atomic Operations
Bit Operations
Spinlocks
Seqlocks
Disabling Preemption
Mutexes
Semaphores
Completion Functions
Read-Copy-Update (RCU)
Reference Counts
Labs

SMP and Threads

SMP Kernels and Modules
Processor Affinity
CPUSETS
SMP Algorithms – Scheduling, Locking, etc.
Per-CPU Variables **
Labs

Processes

What are Processes?
The task_struct
Creating User Processes and Threads
Creating Kernel Threads
Destroying Processes and Threads
Executing User-Space Processes From Within the Kernel
Labs

Process Limits and Capabilities **

Process Limits
Capabilities

Page 5/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Labs

Monitoring and Debugging

Debuginfo Packages
Tracing and Profiling
sysctl
SysRq Key
oops Messages
Kernel Debuggers
debugfs
Labs

Scheduling

Main Scheduling Tasks
SMP
Scheduling Priorities
Scheduling System Calls
The 2.4 schedule() Function
O(1) Scheduler
Time Slices and Priorities
Load Balancing
Priority Inversion and Priority Inheritance **
The CFS Scheduler
Calculating Priorities and Fair Times
Scheduling Classes
CFS Scheduler Details
Labs

Memory Addressing

Virtual Memory Management
Systems With and Without MMU and the TLB
Memory Addresses
High and Low Memory
Memory Zones
Special Device Nodes
NUMA
Paging
Page Tables
page structure
Kernel Samepage Merging (KSM) **
Labs

Huge Pages

Huge Page Support
libhugetlbfs
Transparent Huge Pages

Page 6/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Labs

Memory Allocation

Requesting and Releasing Pages
Buddy System
Slabs and Cache Allocations
Memory Pools
kmalloc()
vmalloc()
Early Allocations and bootmem()
Memory Defragmentation
Labs

Process Address Space

Allocating User Memory and Address Spaces
Locking Pages
Memory Descriptors and Regions
Access Rights
Allocating and Freeing Memory Regions
Page Faults
Labs

Disk Caches and Swapping

Caches
Page Cache Basics
What is Swapping?
Swap Areas
Swapping Pages In and Out
Controlling Swappiness
The Swap Cache
Reverse Mapping **
OOM Killer
Labs

Device Drivers**

Types of Devices
Device Nodes
Character Drivers
An Example
Labs

Signals

What are Signals?
Available Signals
System Calls for Signals

Page 7/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

Sigaction
Signals and Threads
How the Kernel Installs Signal Handlers
How the Kernel Sends Signals
How the Kernel Invokes Signal Handlers
Real Time Signals
Labs

Closing and Evaluation Survey

** These sections may be considered in part or in whole as optional. They
contain either background reference material, specialized topics, or advanced
subjects. The instructor may choose to cover or not cover them depending on
classroom experience and time constraints

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 8/8 https://jamsadr.quickstart.com/linux-kernel-internals-and-development-lfd420.html

https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://www.credly.com/org/quickstart/badge/linux-kernel-internals-and-development-lfd420.1
https://jamsadr.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

