QUICKSTART

Over 35 Years Of Technology Training

Document Generated: 10/21/2025
Learning Style: Virtual Classroom
Technology:

Difficulty: Advanced

Course Duration: 4 Days

Security and the Linux Kernel (LFD441)

Page 1/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-Ifd441.html

About this course:

Learn the methods and internal infrastructure of the Linux kernel. This course
focuses on the important tools used for debugging and monitoring the kernel, and
how security features are implemented and controlled.

This course provides experienced programmers with a solid understanding of Linux
kernel. debugging techniques and tools. This four day course includes extensive
hands-on exercises and demonstrations designed to give you the necessary tools
to develop and debug Linux kernel code.

The average salary of an Embedded Linux Developer is $107,500 per year.

Audience:

¢ App Developers
e C/C++,C# developers
¢ Linux Developers

Prerequisite:
Before taking this course, you should:

¢ Be proficient in the C programming language.

¢ Be familiar with basic Linux (UNIX) utilities such as Is, grep and tar.

e Be comfortable using any of the available text editors (e.g. emacs, vi, etc.).

e Experience with any major Linux distribution is helpful but not strictly
required.

¢ Have experience equivalent to having taken LFD420, the kernel internals
course.

Course Outline:
Introduction

¢ Objectives

e Who You Are

¢ The Linux Foundation{

e Copyright and No Confidential Information

¢ The Linux Foundation{ Training

¢ Certification Programs and Digital Badging

¢ Linux Distributions

e Platforms

¢ Things Change in Linux and Open Source Projects

Preliminaries
¢ Kernel Versions

e Kernel Sources and Use of git

Page 2/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

Lab environment

¢ Virtual Machine

e Why proxmox {?

e Our Lab Environment
e Labs

How to Work in OSS Projects **

e Overview on How to Contribute Properly

e Know Where the Code is Coming From: DCO and CLA

e Stay Close to Mainline for Security and Quality

¢ Study and Understand the Project DNA

e Figure Out What Itch You Want to Scratch

¢ |dentify Maintainers and Their Work Flows and Methods
e Get Early Input and Work in the Open

¢ Contribute Incremental Bits, Not Large Code Dumps

e Leave Your Ego at the Door: Don't Be Thin-Skinned

¢ Be Patient, Develop Long Term Relationships, Be Helpful

Reducing Attack Surfaces

e Why Security?
Types of Security
Vulnerabilities
Layers of Protection
Software Exploits
Labs

Kernel Features

e Components of the Kernel

e User-Space vs. Kernel-Space

e What are System Calls?

¢ Available System Calls

e Scheduling Algorithms and Task Structures
¢ Process Context

e Labs

Kernel Deprecated Interfaces

e Why Deprecated

e deprecated

e BUG() and BUG_ON()

e Computed Sizes for kmalloc()

e simple_strtol() Family of Routines
e strcpy(), strncpy(), stricpy()

e printk() %p Format Specifier

¢ Variable Length Arrays

e Switch Case Fall-Through

Page 3/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

e Zero-Length and One-Element Arrays in Structs
Address Space Layout Randomization (ASLR)

e Why ASLR?

* How to Use ASLR

¢ Disabling ASLR for Specific Programs

e Kernel Configuration

e Kernel Address Space Layout Randomization (KASLR)
e How KASLR Works

¢ Enabling KASLR

e Labs

Kernel Structure Layout Randomization

¢ Benefits

¢ How Structure Randomization Works

e Structure Initialization

¢ Opt-in vs Opt-out

e Partial Randomization

¢ Enabling Structure Randomization

¢ Building Out-of-tree Modules with Structure Randomization

Introduction to Linux Kernel Security

e Linux Kernel Security Basics

¢ Discretionary Access Control (DAC)
e POSIX ACLs

e POSIX Capabilities

¢ Namespaces

e Linux Security Modules (LSM)

¢ Netfilter

¢ Cryptographic Methods

e The Kernel Self Protection Project

CGroups

e Introduction to CGroups
e Overview

e Components of CGroup
e cgroup initialization

e cgroup Activation

e cgroups Parameters

e Testing cgroups

e systemd and cgroups

e Labs

* BPF

Page 4/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

eBPF
Installation
bcc Tools
bpftrace
Labs

Seccomp

What is seccomp

The seccomp Interface
seccomp Strict Mode

e seccomp Filter Mode
Labs

Secure Boot

Why Secure Boot?

Secure Boot x86

Embedded Systems Secure Boot
Labs

Module Signing

e What is Module Signing?

¢ Basics of Signatures

e Module Signing Keys

¢ Enabling Module Signature Verification
e How It Works

¢ Signing Modules

e Labs

Integrity Measurement Architecture (IMA)

e Why IMA?

¢ Conceptual Operations

e Modes of Operation

¢ Collect Mode textit {(Collect and Store)

¢ Logging Mode textit {(Appraise and Audit)

¢ Enforcing Mode textit {(Appraise and Protect)
e Extended Verification Module (EVM)

e Labs

DM-Verity

What is dm-verity?
How dm-verity Works
Enabling dm-verity
Setting up dm-verity
Using dm-verity
Signing with dm-verity

Page 5/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

¢ Booting with dm-verity
e Labs

Encrypted Storage

Why Encrypted Storage?

Data Encryption Solutions

Survey of Storage Encryption Options
Block Encryption

Block Encryption Use

Filesystem Encryption

Filesystem Encryption Use

Layered Filesystem Encryption
Layered Filesystem Encryption Use
Labs

Linux Security Modules (LSM)

What are Linux Security Modules?
LSM Basics

LSM Choices

How LSM Works

An LSM Example: Yama

Labs

SELinux

SELinux

SELinux Overview
SELinux Modes
SELinux Policies
Context Utilities

SELinux and Standard Command Line Tools
SELinux Context Inheritance and Preservation**

restorecon**

semanage fcontext**
Using SELinux Booleans**
getsebool and setsebool**
Troubleshooting Tools
Labs

AppArmor

What is AppArmor?
Checking Status
Modes and Profiles
Profiles

Utilities

Yama (LSM)

Page 6/10

https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

Why Yama?
Configuring Yama
How Yama Works
Labs

LoadPin (LSM)

Why LoadPin?
Enabling LoadPin
Using LoadPin

How LoadPin Works

Lockdown

Why Lockdown?

Lockdown Modes

What Things are Locked Down?
How It Works

A Few Notes

Labs

Safesetid

Why Safesetid?
Configuring Safesetid
How Safesetid Works
Labs

Netfilter

¢ What is netfilter?

¢ Netfilter Hooks

¢ Netfilter Implementation
e Hooking into Netfilter

e |ptables

e nftables

e Labs

Netlink Sockets**

What are netlink Sockets?
Opening a netlink Socket
netlink Messages

Labs

Closing and Evaluation Survey
e Evaluation Survey

Kernel Architecture |

Page 7/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

UNIX and Linux **

Monolithic and Micro Kernels
Object-Oriented Methods
Main Kernel Components
User-Space and Kernel-Space

Kernel Programming Preview

Task Structure

Memory Allocation

Transferring Data between User and Kernel Spaces
Object-Oriented Inheritance - Sort Of

Linked Lists

Jiffies

Labs

Modules

What are Modules?
A Trivial Example
Compiling Modules
Modules vs Built-in
Module Utilities
Automatic Module Loading
Module Usage Count
Module Licensing
Exporting Symbols
Resolving Symbols **
Labs

Kernel Architecture Il

Processes, Threads, and Tasks
Kernel Preemption

Real Time Preemption Patch
Labs

Kernel Configuration and Compilation

Installation and Layout of the Kernel Source
Kernel Browsers

Kernel Configuration Files

Kernel Building and Makefiles

initrd and initramfs

Labs

Kernel Style and General Considerations

Page 8/10

Coding Style

¢ Using Generic Kernel Routines and Methods

https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

¢ Making a Kernel Patch

* sparse

¢ Using likely() and unlikely()

e Writing Portable Code, CPU, 32/64-bit, Endianness
e Writing for SMP

e Writing for High Memory Systems

* Power Management

e Keeping Security in Mind

e Labs

Race Conditions and Synchronization Methods

e Concurrency and Synchronization Methods
e Atomic Operations

¢ Bit Operations

e Spinlocks

e Seglocks

¢ Disabling Preemption

e Mutexes

e Semaphores

e Completion Functions

¢ Read-Copy-Update (RCU)
¢ Reference Counts

e Labs

Memory Addressing

¢ Virtual Memory Management
e Systems With and Without MMU and the TLB
e Memory Addresses

¢ High and Low Memory

¢ Memory Zones

¢ Special Device Nodes

e NUMA

e Paging

e Page Tables

* page structure

e Labs

Memory Allocation

¢ Requesting and Releasing Pages
e Buddy System

¢ Slabs and Cache Allocations

e Memory Pools

e kmalloc()

e vmalloc()

e Early Allocations and bootmem()
¢ Memory Defragmentation

e Labs

Page 9/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-1fd441.html

Credly Badge:

Display your Completion Badge And Get The
Recognition You Deserve.

QUICKSTART

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Linux Kernel Debugging and Security
(LFD440)

INFORMATION
SECURITY

e |et anyone verify your completion and
achievement by clicking on the badge

e Display your hard work and validate your
expertise

e Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

Find Out More or See List Of Badges

Page 10/10 https://jamsadr.quickstart.com/linux-kernel-debugging-and-security-Ifd441.html

https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://www.credly.com/org/quickstart/badge/linux-kernel-debugging-and-security-lfd440.1
https://jamsadr.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

